
352 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-31, NO. 4, APRIL 1986 

d:=min { k  : PfAkB#O}, d t = 2  

BZ=B:=[-l 01, t j 2 = I l ,  &=O, P 2 = p 2 ,  p2=13, R 2 = p 2 R 1 = R I  

0, = [Ell 

0 - 1 1 0 1  
RC= 0 - 1 0 0 0  

- 1  0 0 0 0  

Q =  

c 

V-=ker $=span {[0 0 0 1 O l r } .  

Note that although - -  

V. COMPUTATIONAL ASPECTS OF THE PRFSENTED METHODS 

The approach presented seems to be useful for computer aided 
computations because only elementary operations (available in any 
standard computer programs library) on matrices are used, Le., reduction 
of a matrix into echelon form and verification of  rank of a triangular 
matrix. The computer program can be written in a form of a loop. The 
loop stops when (21) is satisfied. Then the rank test of (25) should be 
performed. If (25) is not satisfied, then the whole loop should be repeated 
for the system ($, A ,  B).  Computation of Q ?  demands only reduction of 
Q into the echelon form. The program demands only one computation of a 
linear equation of the form Qa = 0. Such a program can be found in a 
standard computer programs library. 

The considered types of matrices significantly diminish the amount of 
computer calculations because rank tests can be reduced in  many cases to 
evaluation of positions of zero elements in tested matrices in the echelon 
form of low dimensions. 

The .kpproach presented seems to be more effective computationally 
than Wonham’s method [7] because Wonham’s method demands at  any 
stage of a sequential program computation of hvo linear equations of the 
form X;R, = 0 and P,Y, = 0 [7; p. 1011. Moreover, at any stage of 
Wonham’s algorithm we have to compute 

rank [ 1‘-1, YJ 

which is complicated in the  case of large scale systems. 
The Vardulakis approach [6] is very simple from a computational point 

of view. provided that the system (C, A ,  B) is in the Luenberger 
controllable canonical form (LCCF). In the general case the reduction of 
(C,  A ,  B) into LCCF is necessary and it demands computation of 
controllability indexes of (A, B) and inversion of a certain nonsingular 
matrix (cf. [5]). 

CONCLUSIONS. 

In this paper a simple method for computation, useful in computer 
aided calculations, of a maximal (A, B)-invariant subspace contained in 
ker C was presented. The method showed how to unify the approach of 
Bhattacharyya, Wonham, and Vardulakis. A simple example was worked 
out. 
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On Minimum Spanning Blocks  in 
Discrete Linear Systems 

A. FEUER AND M. HEYMANN 

Abstract-The question of spanning blocks in  linear  discrete systems 
arises in  many adaptive identification and control problems  and  is  related 
to the convergence of these algorithms. Specifically, in block-invariant 
adaptive control, it  is of importance to know the  minimum  length of these 
spanning blocks. Establishing this minimum length is  the topic of the 
present note. It is found to be  equal to the sum of the dimensions of the 
system’s state space and its controllable subspace. 

I. INTRODUCTION 

A problem that has received a great deal of attention in the literature on 
adaptive control has been that of establishing conditions for persistency of 
excitation required for global convergence of parameters. One cause of 
difficulty in establishing such conditions is that the excitation condition 
must be satisfied inside a time-va!-ying loop around the unknown plant. 
When employed in algorithms for adaptive control of nonminimum phase 
plants, an added difficulty has been that the maintenance of loop stability 
depended on parameter convergence. 

In several recent papers [I]-[3]. approaches were proposed for 
ensuring persistency of excitation in adaptive control of nonminimum 
phase plants via the technique of block-invariant feedback. With this 
technique, the feedback gain is  held constant for periods of sufficient 
length so as to circumvent the difficulties caused by the time variation of 
the closed-loop plant. 
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We illustrate the approach by using the terminology and notation of [3] 
where it was shown that a large class of adaptive control problems can be 
transformed into the following standard state-space formulation. 

Consider the discrete-time linear system described by the equations . 

where $a E 12 ', pa E IA m ,  uk E are the state, output, and input at 
time k with A ,  b, and C real matrices of suitable dimensions but with 
unknown parameters.  The control to be employed is given by the state- 
feedback equation 

= f * $ k  + ut (1 4 

where uk E 03 I is a new command input and wherc f* E 02 I x A is a 
feedback gain matrix (row vector) which depends on  the (unknown) plant 
parameters and on the desired closed-loop performance. The vector f * is 
given by a formula of the form 

f*=b*%+H (1.3) 

where B * E E l m  is a vector of (also unknown) parameters and where G 
and H are given constant matrices. (Here and below (.) denotes the 
transpose.) Finally, the parameter vector B * is related to the output of the 
system (1.1) by the regression equation 

?lk = (plb* (1.4) 

where { vk }, ?la E OlFl I is a sequence of (known) signals that is generated 
from the sequences { G k }  and { up }. 

In an adaptive control implementation, (1.4) serves to obtain an 
estimate b j  of a*, say by the recursive least squares (or €US) algorithm 
[4]. This estimate is then used in (1.3) instead of B * to obtain an estimate 
f, for the feedback gain vector that is  used in (1.2) in place of the 
unknown f *. 

To ensure convergence of the algorithm. it is clearly necessary that the 
estimates 8, converge to the  true value of the parameter vector B * and to 
this end it is necessary that a persistency of excitation condition be 
satisfied. With the RLS algorithm, the persistency of excitation condition 
is that [4] 

where Amn( ) denotes the minimal eigenvalue. To satisfy (1.5), it is 
obviously sufficient that there exists a real number e > 0 and an integer N 
> 0 such that for all integers I 2 0 

j - / .v+ I 

The block-invariant feedback approach that was used in [I]-[3] rests on 
satisfying the persistency of excitation via condition (1.6). Thus, the 
integer N is considered as the block Iength and to avoid time variation of 
the plant dynamics during the spanning process, the feedback gain vector 
is held constant during spanning blocks (of length N )  and is changed only 
between them. During each invariant block, the closed-loop dynamics is 
then given by 

where A = A i b f j .  In order  to be able to generate a spanning output 
sequence { qp} of (1.7) from the input, it is obviously necessary that (1.7) 
be output reachable. Assuming that the output reachability property holds, 
the problem arises of what is the least block size N for which an input 
sequence { up} can be found such that for all initial conditions $o of (1.7) 

f i  + Y - 1 steps. 
I Clearly, if J;l is not  spanned  in h7 = ti + Y - 1 steps it will not be spanned  in N c. 

and independently of the (unknown) parameter values of (A j ,  b, C ) ,  the 
spanning condition (1.6) is satisfied for all I z 0. This will be the central 
topic of the present note. 

We refer the reader  to a related problem concerning input sequence 
properties for reachable systems which has been studied recently in [SI. 

II. MINIMAL SPANNING BLOCKS 

We consider  the  class L : = L (m, i ) of all systems of the form (1.7) 
or, equivalently, ( 1 . 1 )  with fixed dimensions rn and fi (rn 5 fi). For an 
integer v satisfying rn I v 5 i we let C ,  denote the class of all elements 
in L that are output reachable and whose reachable subspace (in 0'2 ") is of 
dimension n, 5 v. Clearly, then m 5 n, I v. We now make the 
following. 

Definition 2,l: An input sequence { u k }  to  (1.1)- is said to be N -  
spanning for class C ,  if for every initial state $,, E 12" and every system 
in C ,  the condition is satisfied that 

rank [ql, -.e, qv]=rn. (2.1) 

The main result of the present note is the following. 
Theorem 2.2: k t  v 2 rn be a given integer. Then an  N-spanning input 

sequence for  class C ,  exists if and only if N 2 i + v. 
Before proving the theorem, it is of interest to relate the present result 

to some cases dealt with in the literature. In [2], the convergence of a 
block-invariant pole placement adaptive controller for nth-order SISO 
plants has been investigated. That controller is also examined in [3] where 
a spanning block of length Ion is proposed. Comparing  to the present 
result, we note that this length is actually minimal (with A = 6n and n, = 
4n).  In [2], however, it has been suggested that a block length of 6n (= fi) 
suffices for  spanning, raising the question of whether spanning can 
actually be guaranteed there independently of the initial conditions. In [4], 
on the other hand, for a case where A = n, = 2n, an input sequence is 
employed for which a block of length 10n is suggested. Our present result 
indicates that an input sequence could be used there for which spanning 
occurs in blocks of length 4n only. 

Proof of Theorem 2.2: For any vector w E O M  m, let 

a k  = w79k (2.2) 

so that condition (2.1) is equivalent to the statement that a1; = 0 for k = 
1, 2, ..., Nonly  ifw = 0. 

The  z-transform of the output { p k }  of system (1 .1 )  is given by 

where U ( z )  [ = XZ,, u,t- ' ]  is the z-transform of the input sequence 
{up). For a vector w E Elrn, denote 

(SO that ap = w T q k ,  k = 0, 1, 2, . . . ) and let 

and 

After multiplication of both sides of (2.3) by wr,  we obtain with the 
notation of (2.4)-(2.6) 

and upon multiplying (2.7) through byp(z - I )  and equating coefficients of 
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z - I ,  the following N + 1 equations are obtained: - 
1 

PI 1 

Ptpl 1 . . . .  
. . . .  

. .  
Pe- I 

Pr . 
0 . .  
. . . .  

. .  

o . . . . .  - 

:1 

Let { uk} be a given input sequence and define the following. 
Case I :  v = A 
Let r l ,  r2, . . . , r, be a nontrivial solution of 

-I 

(2.1 1) 

Foreithercasechoosepl,p,, --*,pasothatp(z-')andr(z-*)haveat 
least A - v and at most A - rn roots in common. Then choose a,, ql, 4 2 ,  

so that 
r , = r 2 = .  . . - -r,=O. 

By (2.5) the above implies that 

wrCA'-'b=O, i = l ,  2, ..., v 

and since the dimension n, of the system's controllable subspace satisfies 
n, I v, we get 

wrCA'-'b=O for all i 2 1  

so that 
w ~ C [ I Z - A ] - ' b = O .  (2.10) 

From the output reachability of the system and (2. lo), we conclude that 
w = 0. Hence, as pointed out earlier, (2.1) holds and { uk} as defined in 
(2.9) is (A + v)-spanning for C,. 

To prove the "only i f '  part let N = A + v - 1. We will show that 
for every given input sequence, a system can be found in C, for which this 
input sequence is not N-spanning. 

I Clearly, if am is not  spanned in N = ii + Y - 1 steps, it n,ill not be spanned in N < 
ii + Y - 1 steps. 

(2.12) 

the input sequence 

I Define now 
0 for k=O, 1, ..., i i - 1  

any value for A<k<N.  
uk= 1 for k=A (2.9) and 

Suppose now that for  some system in C ,  with initial state $,,, there 
exists o E E l m  so that when the above input is used ai = 0, i = 1, 2, 
. . . , A + Y. Then the last v equations of (2.8) become A =  

then clearly 

(2.13) 

(2.14) 

(2.15) 

where e; = [0, 0, . . e ,  I] .  
Since p (z - I )  was chosen so that it has no more than A - rn (and no less 

than ii - v) roots in common with r ( z - ] )  and since (ea, A )  is an 
observable pair,  the controllable subspace of ( A ,  6) has dimension n, 
satisfying m I n, 5 v. This implies that there exist indexes i l ,  i2, . . . , 
im- l  < A sothat { e i [ z z  - A I - ' ~ ,  e ; [ ~ z  - A I - I ~ , ~  = 1 ,2 ,  .-., m 
- 1 } are linearly independent over the reals. 

Hence, if 

C=[e,, e,,, *.., eim-Jr.  (2.16) 

the system represented by (C, A ,  b) as defined, is output reachable and 
hence belongs to class C,. This system, with initial state 
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and w = e, satisfies (2 .5)  and (2.6) with the coefficients defined in 
(2.11)-(2.13). However. substituting (2.11) [or (2.12)] and (2.13) in 
(2.8) and solving for cy; we get 

a,=O i = l ,  2, ..., N. 

Hence. { uk} is  not N = A + v - 1 spanning for C , ,  and this completes 
the proof of the theorem. [3 
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Some Discrete-Time Counterparts to Kharitonov's 
Stability Criterion for Uncertain Systems 

C. V.  HOLLOT AND A. C. BARTLETT 

Abstract-In [l], Kharitonov gave an elegant and simple stability 
criterion for continuous-time systems. This note reports on similar results 
for discrete-time systems. 

I. INTRODUCTION 

In [l], Kharitonov stated a most surprising result concerning the 
stability of continuous-time uncertain systems. The goal of this work is  to 
give similar results for discrete-time systems. To do this, we shall first 
state the major results contained in [ 11. To this end, consider the uncertain 
system described by the state equations 

x ' ( t ) = A ( r ) x ( t )  (1) 

where x ( t )  E R" is the system state and r E CR C RP is the system 
uncertainty. This uncertainty is a vector of fixed but othenvise unknown 
parameters. The uncertainty bounding set CR is compact and the entries of 
A (r) depend continuously on r. The asymptotic stability of the origin of 
( I )  requires that  the family of characteristic polynomials 

be contained in the set of nth degree polynomials whose zeros lie in the 
left half plane: i.e., the set G,. Now, for i = 0, 1, . . ., n, define 

cy, 2 min u,(r); 6, 2 rnaxu,(r) - r E 3  E 8 

and construct the family of polynomials 
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Clearly. 11, C S,. The next theorem gives Kharitonov's main result. 

po (ynomids 
Theorem I: (See [ l ]  for  proof.) S,  c Gs if and only if the four 

f , ( s ) = c y ~ ~ " + a ; l s " - ~ + a ; ~ S ~ ~ ~ + a ~ s " - ~ + ~ , s " ~ ~ +  . ' .  ; 

fi(s)=olns'+als"-~+a;zs"-~ + ~ J S " - i + L Y 4 S " - J + .  . . . 
f ~ ( S ) = O i n s " + ~ , S " ~ ~ + o l l S " - ~ + a l s " - " + a ; , s " - J + . . ~  - - ; 

f ; ( s )=~nS"+olIS"~ '+als"- '+ai~s"- '+d,s" -4+. . .  

- - - 

- - - 

- - 

are contained in G,. Consequently, i f f l  (s) through f4(s) are contained 
in G,, then A, C G,. 

Compared to  a direct application of the Routh-Hunvitz criterion, this 
theorem offers  a simple sufficient condition for A, C G,. Moreover, if A, 
= S,, then these conditions are  necessaq as well. An interpretation to 
Theorem 1 can be given by first considering a polynomial's representation 
in coefficient space. In this way we can think of As as  some set in (n  + 1)- 
dimensional space, S, as  an (n+ 1)-dimensional rectangle, and the 
polynomials fl(s) as four "special" vertices of S,. By constructionl the 
rectangle S, contains A s  and has edges which are parallel to the coordinate 
axes. Theorem 1 states that all the polynomials associated with  the 
rectangle S, are stable if and only if the four vertices f (s) through f4(s) 
are stable. 

This note reports on efforts to extend these results to discrete-time 
systems. Clearly. one can begin by simply "translating" Kharitonov's 
result to the z-domain via the bilinear transformation s = (z + l) /(z - 
I ) .  Indeed, we shall do this in  the  next section and state these almost 
trivial results as a corollary to Theorem 1. A more challanging line of 
research is concerned with the validity of a direct restatement of 
Kharitonov's result in the z-domain. That is, suppose we have a rectangle 
in coefficient space with edges parallel to the axes. Each point  in the 
rectangle corresponds to  an nth degree polynomial in  the variable z. 
Prompted by Theorem I we ask: Do there exist four vertices whose 
stability implies stability of the complete rectangle? In general, the answer 
is "no." In fact, even if all the vertices are  stable, then the rectangle may 
be unstable. However. we  will  be able to prove the following. Consider 
an n/2dimensional (assume n even) rectangle lying in the first n/2 
dimensions of (n + I)-dimensional coefficient space. If all the vertices of 
this rectangle are stable, then the rectangle is stable. This result is stated in 
Theorem 2 and is applicable to uncertain systems whose uncertainties 
enter only in the coefficients of zo, z ' ,  . . . , znj2 of the system's 
characteristic polynomial. 

11. DISCRETE-TIME SYSTEMS 

Consider the discrete-time system described by the state equations 

x ( k +  I ) = @ ( q ) x ( k )  (2) 

where x(k )  E R" is the system state and q E Q C RP is the system 
uncertainty. The vector q is fixed but unknown. the uncertainty bounding 
set Q is compact, and the entries of %(q) depend continuously on q. 
Analogous to the continuous-time case, we shall form the set of 
characteristic polynomials A, generated by ( 2 ) .  Presently, we shall write 
this set as 

and take GZ to be the set of polynomials of degree n whose zeros lie in the 
unit circle. For i = 0, 1, . . . , n, define 

and let 
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